zx31415.wordpress.com
Pauli矩阵,表示论与Kähler恒等式 | Fight with Infinity
https://zx31415.wordpress.com/2012/04/08/pauli矩阵,表示论与kahler恒等式
Wir müssen wissen, wir werden wissen. Leave a Reply Cancel reply. Enter your comment here. Fill in your details below or click an icon to log in:. Email (Address never made public). You are commenting using your WordPress.com account. ( Log Out. You are commenting using your Twitter account. ( Log Out. You are commenting using your Facebook account. ( Log Out. You are commenting using your Google account. ( Log Out. Notify me of new comments via email. Notify me of new posts via email.
zx31415.wordpress.com
Weil猜想漫谈:幕间 VIII | Fight with Infinity
https://zx31415.wordpress.com/2016/10/20/weil猜想漫谈:幕间-viii
Wir müssen wissen, wir werden wissen. 在进入对Deligne I的讨论前,让我们 轻松 一下 假想现在是60年代而我们是 尚未提出标准猜想的 Grothendieck,让我们试着来证明. 弱Lefschetz定理 公理 7 立即派上了用场 与Poincaré对偶 公理 4 相结合,并应用归纳假设,. 成立,由Künneth公式 公理 5 ,. 我们提醒读者,我们曾在 漫谈 III 第二主题. 基于这个简单的推理,Grothendieck曾做过非常 天真 的猜想 立即被Serre证否了. Leave a Reply Cancel reply. Enter your comment here. Fill in your details below or click an icon to log in:. Email (Address never made public). You are commenting using your WordPress.com account. ( Log Out. Notify me of new comments via email.
zx31415.wordpress.com
月旦 XI | Fight with Infinity
https://zx31415.wordpress.com/2017/01/01/月旦-xi
Wir müssen wissen, wir werden wissen. For December, 2017. AlphaGo的故事还没有结束 有传言说,现今的中国围棋第一人柯洁已开始使用Google提供的AlphaGo程序进行日常训练 这同时也是对AlphaGo稳定性的进一步测试 在与李世乭的五番棋大战中,程序曾经出现过一次明显的 崩溃 ,直接导致了败局 ,并将在合适的时候 代表人类再次挑战AlphaGo. 通过机器学习技术训练出的 机器人杀手 已在摩拳擦掌随时准备进入战场,以致联合国下辖的 特定常规武器公约 缔约方开始严肃考虑 禁止此类机器人的应用. 这是美国粒子物理学界寄望于中国的理由 他们厌倦了和国会 以及他们背后的 庸众 打交道,企图 抄近道。 讽刺的是,或许这也会成为这个项目最终 无疾而终 的理由 因为一句话打开的大门也可能因为一句话而关上。 因为政府和公众的回答一定是 不能 不能 不能. 同样是一个关于量子系统控制的问题,但难度要高出不少 有些人认为难到 不可能 的程度。 还有太多细节需要被梳理,被归纳,from bottom to top. 的形态 我们又从 十 回到了 一。
zx31415.wordpress.com
Weil猜想漫谈 VII:插曲 | Fight with Infinity
https://zx31415.wordpress.com/2016/10/18/weil猜想漫谈-vii:插曲
Wir müssen wissen, wir werden wissen. 本章是漫谈的 插曲 提及的所有结果都和Weil猜想的证明 或者更严格地说,Deligne I 中给出的证明 没有直接关联。 Weil除子 模去有理等价 线性等价 关系给出我们熟悉的除子类群/ Picard群. 模去代数等价关系给出 有限生成的 Néron Severi群. 上,代数等价、同调等价和数值等价是重合的 (Matsusaka),这个结论给人以强烈的暗示 经典等价关系 是否在本质上只有2类呢 Griffiths找出了反例. Conjectures in Arithmetic Geometry. Lectures on Algebraic Cycles. 这是后续许多发展的源头 在Voison, Vol.2中详细介绍了和复几何相关的部分。 本章引入的概念太少,我们只能努力尝鼎于一脔,考虑经典的Abel-Jacobi定理的一种推广 却期望 但愿不是奢望 读者能够食髓知味,瞥见Chow环与Hodge结构的微妙关系. 在 无法用有限对象表出 的意义上是 大 的。 Well, no promise! 160; ↩.
zx31415.wordpress.com
月旦 IX | Fight with Infinity
https://zx31415.wordpress.com/2016/10/31/月旦-ix
Wir müssen wissen, wir werden wissen. For October, 2016. 老爷子似乎不太满意当前研究几何Langlands纲领的主流方式 我称之为 from top to bottom。 From bottom to top ,他 重新 提出了 相当 天真 的问题. 过这样的图像 复几何和辛几何是同一棵树上 镜像对称 的不同分支,伪全纯曲线和Picard-Lefschetz理论生长在比Floer同调和Fukaya范畴更加靠近根部的地方。 那么,同样 from bottom to top ,我们应该从这棵树的根部开始强调复几何和辛几何的统一性 据我所知,还没有人发展过这样的辛/复统一理论,即使是从与II型弦论类比的角度。 我认为一个极具潜力的大方向是探索 经典变换 的 范畴化. 此外,至少还有一个经典变换值得被范畴化,即Legendre变换 无论怎么看,这个变换都应该是理解辛几何的关键工具 例如,将这个变换和Morse理论-Lefschetz纤维化的平行性一同加以考察 ,但奇怪的是似乎从来没有人从范畴化的角度严肃考虑过它。 You are commenting us...
zx31415.wordpress.com
Weil猜想漫谈 III:第二主题 | Fight with Infinity
https://zx31415.wordpress.com/2016/10/03/weil猜想漫谈-iii:第二主题
Wir müssen wissen, wir werden wissen. 通常在介绍Weil猜想时, 第二主题 的进入会被推迟到 末乐章 即Deligne完成证明的最后一步。 因此,我们决定在发展 第一主题 之前,让 第二主题 先行进入。 是 精确到常数意义上 唯一的权为12的 尖点形式. 存在某种相似性,并提出或许可以通过研究 假想的 Ramanujan簇 证明. 再往后就是乐曲的高潮 Deligne综合了所有这些发展,得到了一个伟大的 交互证明 ,即借助 经Langlands推广后的 Rankin技巧证明了Weil猜想,又利用Weil猜想给出了Ramanujan-Petersson猜想的证明。 Automorphic Forms and Representations. 160; ↩. The Riemann Hypothesis over Finite Fiels: From Weil to the Present Day. 160; ↩. Leave a Reply Cancel reply. Enter your comment here. Tsun-Huai Li on 月旦 X.
zx31415.wordpress.com
从Bott周期性谈起 Ⅳ | Fight with Infinity
https://zx31415.wordpress.com/2012/01/02/从bott周期性谈起-Ⅳ
Wir müssen wissen, wir werden wissen. K-Theory and the Hopf Invariant. 1)外乘幂运算 简单地将向量空间的外乘幂运算 搬运 到向量丛上。 Vector Fields on Spheres. Leave a Reply Cancel reply. Enter your comment here. Fill in your details below or click an icon to log in:. Email (Address never made public). You are commenting using your WordPress.com account. ( Log Out. You are commenting using your Twitter account. ( Log Out. You are commenting using your Facebook account. ( Log Out. Notify me of new comments via email.
zx31415.wordpress.com
K理论,6维球面和可积性 | Fight with Infinity
https://zx31415.wordpress.com/2016/11/04/k理论,6维球面和可积性
Wir müssen wissen, wir werden wissen. 上,是否存在可积的殆复结构 复结构 几天前,87岁的Michael Atiyah宣布他解决了这个问题 答案是否定的。 The Non-Existent Complex 6-Sphere. 熟悉我的人都知道,20世纪后半叶的所有数学家中,我最欣赏和敬佩的就是Michael Atiyah. 很难用言语来形容我的感动。 从第5卷 规范理论 开始,是他学术生涯的 后半场。 让人惊奇的是,50年代末到60年代初,Bott, Milnor, Kervaire, Adams等数学家发现这些现象本质上是拓扑的,并可以和Hopf纤维化、球面平行化,以及. Atiyah-Singer曾考虑过发展一个类似的相对版本的指标定理,但最终的结果仅仅是得到了一个绝对版本的拓扑指标 再定义 通过 Thom同构. 之后就是Atiyah的 纵身一跃 ,宣称 借助. 一个必要条件是先活到87岁 ↩. 拓扑表示论 和 几何表示论 的关系,有点像拓扑K理论和代数K理论的关系。 160; ↩. 7 thoughts on “ K理论,6维球面和可积性. You are...
zx31415.wordpress.com
月旦 X | Fight with Infinity
https://zx31415.wordpress.com/2016/11/30/月旦-x
Wir müssen wissen, wir werden wissen. For November, 2016. 第10期月旦包括了一些新尝试,个人戏称为 Bohemian rhapsody 读下去就会明白我所指为何。 The Arithmetic of Elliptic Curves. 不过对于算术几何新手来说,还是相当好的入门 补充了 Weil猜想漫谈 中未涉及或者涉及但没有展开讨论的某些论题。 则是Weil猜想的 进阶 ,也是近几年很热门的领域 Peter Scholze, etc. 之一。 Weil-Deligne representations and p-adic Hodge theory: motivation. Hall algebras and Donaldson-Thomas invariants. Computers, Rigidity, and Moduli: The Large-Scale Fractal Geometry of Riemannian Moduli Space. 试着想象一下 所有数学命题 的范畴, 真的 和 假的 都包括在内,态射是命题间的逻辑推导关系。
zx31415.wordpress.com
球面平行化与可除代数 | Fight with Infinity
https://zx31415.wordpress.com/2012/01/02/球面平行化与可除代数
Wir müssen wissen, wir werden wissen. On the parallelizability of spheres. Bott periodicity and integrality theorems. 吴文俊; Borel, Serre). Leave a Reply Cancel reply. Enter your comment here. Fill in your details below or click an icon to log in:. Email (Address never made public). You are commenting using your WordPress.com account. ( Log Out. You are commenting using your Twitter account. ( Log Out. You are commenting using your Facebook account. ( Log Out. Notify me of new comments via email.